

# Virtual Screening of Raltegravir which was First Hiv-1 Integrase Inhibitor

## \*S.S.KADAM

Department of Chemistry, Hon.B.J.Arts, Comm.& Sci.College, Ale, Junnar, Pune, Maharahtra, India

Corresponding Author email-sushmakadam.24@gmail.com

\_\_\_\_\_

#### **ABSTRACT:**

In order to understand the importance of designed, synthesized target molecules containing 1,3,4-oxadiazole moiety, we have taken one of the renowned market available drug in each category as Raltegravir as a case study. Raltegravir was FDA approved the first HIV-1 integrase inhibitor which is used in the treatment of HIV-1 infection Literature survey reveals the various biological importance and docking properties of this moiety so in this research article especially highlight on the pharmaco features of standard chosen drug and synthesized analogues which contain core molecule 1,3,4-oxadiazole based on the active site of protein and also the properties of the ligands. The 3D pharmacophore modeling is a widely utilized method in the computer-aided drug design process. It was used to identify the critical chemical features of synthesized 1,3,4-oxadiazole derivatives with S-adenosyl homocysteine nucleosidase (PDB ID: 4YML) for anti-bacterial activity and docking interactions with Pencillin Binding Protein (PDB ID: 1VQQ) for anti-fungal activity.

**KEYWORDS:** Raltegravir, pharmaco features, 1,3,4-oxadiazole, computer-aided drug design.

\_\_\_\_\_

#### **INTRODUCTION:**

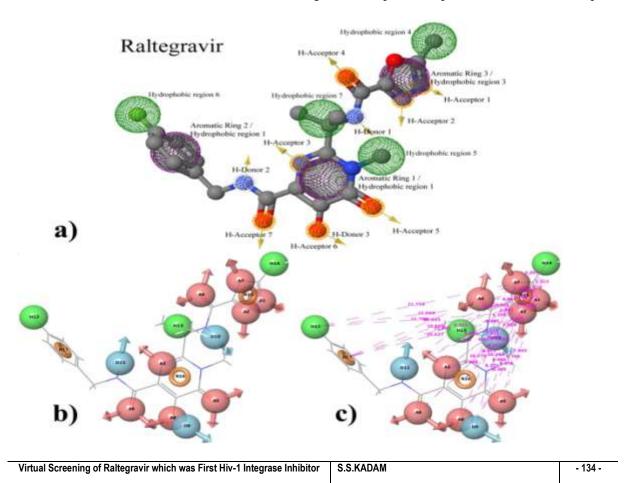
Virtual screening of databases can be used to validate the quality of selected pharmacophore model which was generated based on the known inhibitory activity value of compounds as well as to pick the novel and potent molecule which satisfy all critical chemical features of the hypothesis for further drug development. The initial stage of the hypothesis generation is constructive phase which considers all possible pharmacophore configurations of the most active compounds to entail pharmacophore demands<sup>1</sup>. The following chemical features were selected using Feature mapping, to get the essential information for hypothesis generation process: HBA, HBD, RA, Hy-Ali, positive ionization (PI), negative ionization (NI), and hydrophobic aromatic (Hy-Ar).

Figure 1: Structures of 1, 3, 4- oxadiazole core containing drugs available in the market





1, 3, 4-oxadiazole core containing synthesized biologically evaluated molecule used in clinical medicine as Raltegravir® an antiretroviral drug<sup>2,3</sup> and Zibotentan® an anticancer agent<sup>4</sup> Tiodazosin® and Nesapidil® as hypertensive agent, anti-HIV agent derived from raltegravir by the 5-hydroxyl group of the pyrimidine ring.<sup>5-8</sup> Furamizole® as antibiotics.<sup>9</sup>They are also useful as HIV integrase inhibitors and the angiogenesis inhibitors<sup>10</sup>


A 3D pharmacophore modelling method is also useful to understand 1,3,4 -Oxadiazole core containing Raltegravir compound. ZINCPharmer online server based pharmacophore features mapping was carried out to visualize the location of each pharmacophore feature of particular compound. For estimating the exact positioning, direction and distance between the identified pharmacophore features; we have used Schrodinger's pharmacophore modeling module.

The drug-like property calculation was performed by applying Lipinski's rule of five<sup>11</sup> and ADMET. Lipinski's rule of five is a simple model to forecast the absorption and intestinal permeability of a compound. According to the rule of five, compounds are considered likely to be well absorbed when they possess LogP less than 5, molecular weight less than 500, number of hydrogen bond donors less than 5, number of hydrogen bond acceptors less than 10 and number of rotatable bonds less than 10.

#### Figure 2: Pharmacophore features of Raltegravir compound:

a) ZINCPharmer online server based pharmacophore features mapping showing location and direction of three aromatics rings; seven hydrophobic regions; three hydrogen donors and seven hydrogen acceptors.b) Schrodinger software based pharmacophore features mapping.

c) Distance involved between 1,3,4-Oxadiazole ring and other pharmacophore features of the compound.





## **MATERIAL AND METHODS:**

Manual Pharmacophore hypothesis generation module of Schrodinger's maestro v9.6 was used for Pharmacophore features mapping of the compounds along with location and calculation of distance between the pharmacophore features.

| S.No | Pharmacophore feature | X     | Y      | Ζ     | Radius |
|------|-----------------------|-------|--------|-------|--------|
| 1.   | Aromatic ring 1       | 0.11  | -7.99  | -0.06 | 1.10   |
| 2.   | Aromatic ring 2       | -5.99 | -9.56  | 3.23  | 1.10   |
| 3.   | Aromatic ring 3       | 0.02  | -1.13  | -0.01 | 1.10   |
| 4.   | Hydrogen Donor 1      | 0.07  | -4.50  | 0.83  | 0.50   |
| 5.   | Hydrogen Donor 2      | -3.05 | -9.58  | 1.07  | 0.50   |
| 6.   | Hydrogen Donor 3      | 0.05  | -10.22 | -1.67 | 0.50   |
| 7.   | Hydrogen acceptor 1   | 0.01  | -0.77  | -1.06 | 0.50   |
| 8.   | Hydrogen acceptor 2   | 0.03  | -2.00  | -0.69 | 0.50   |
| 9.   | Hydrogen acceptor 3   | -0.88 | -7.78  | 0.82  | 0.50   |
| 10.  | Hydrogen acceptor 4   | 0.06  | -3.22  | 2.65  | 0.50   |
| 11.  | Hydrogen acceptor 5   | 2.09  | -8.30  | -1.74 | 0.50   |
| 12.  | Hydrogen acceptor 6   | 0.05  | -10.22 | -1.67 | 0.50   |
| 13.  | Hydrogen acceptor 7   | -2.12 | -10.81 | -0.53 | 0.50   |
| 14.  | Hydrophobic region 1  | 0.11  | -7.99  | -0.06 | 1.00   |
| 15.  | Hydrophobic region 2  | -5.99 | -9.56  | 3.23  | 1.00   |
| 16.  | Hydrophobic region 3  | 0.02  | -1.13  | -0.01 | 1.00   |
| 17.  | Hydrophobic region 4  | -0.02 | 1.50   | 0.01  | 1.00   |
| 18.  | Hydrophobic region 5  | 2.20  | -6.08  | -0.18 | 1.00   |
| 19.  | Hydrophobic region 6  | -7.71 | -8.66  | 5.16  | 1.00   |
| 20.  | Hydrophobic region 7  | 0.09  | -5.74  | 2.23  | 1.00   |

Table 1: XYZ co-ordinates and radius of each pharmacophore feature of Raltegravir compound:

 Table 2: Distances between each pharmacophore features with other within the Raltegravir

| compound: |        |        |                          |        |        |                          |
|-----------|--------|--------|--------------------------|--------|--------|--------------------------|
| S.No      | Site 1 | Site 2 | Distance in<br>angstroms | Site 1 | Site 2 | Distance in<br>angstroms |
| 1.        | A1     | A2     | 1.287                    | A5     | R16    | 2.615                    |
| 2.        | A1     | A3     | 7.311                    | A5     | R17    | 9.567                    |
| 3.        | A1     | A4     | 4.441                    | A6     | A7     | 10.365                   |
| 4.        | A1     | A5     | 7.845                    | A6     | A8     | 2.52                     |
| 5.        | A1     | A6     | 10.279                   | A6     | D9     | 3.442                    |
| 6.        | A1     | A7     | 2.138                    | A6     | D10    | 6.631                    |
| 7.        | A1     | A8     | 9.468                    | A6     | D11    | 3.088                    |
| 8.        | A1     | D9     | 9.624                    | A6     | H12    | 8.257                    |
| 9.        | A1     | D10    | 3.905                    | A6     | H13    | 6.346                    |
| 10.       | A1     | D11    | 8.981                    | A6     | H14    | 12.505                   |
| 11.       | A1     | H12    | 12.669                   | A6     | R15    | 9.93                     |

Virtual Screening of Raltegravir which was First Hiv-1 Integrase Inhibitor S.S.KADAM



| 12.        | A1                | H13                      | 6.136                    | A6      | R16 | 3.628   |
|------------|-------------------|--------------------------|--------------------------|---------|-----|---------|
| 13.        | A1                | H14                      | 2.512                    | A6      | R17 | 5.537   |
| 14.        | A1                | R15                      | 1.107                    | A7      | A8  | 9.811   |
| 15.        | A1                | R16                      | 7.288                    | A7      | D9  | 10.089  |
| 16.        | A1                | R17                      | 11.475                   | A7      | D10 | 3.955   |
| 17.        | A2                | A3                       | 6.039                    | A7      | D11 | 8.565   |
| 18.        | A2                | A4                       | 3.555                    | A7      | H12 | 11.759  |
| 19.        | A2                | A5                       | 6.709                    | A7      | H13 | 5.157   |
| 20.        | A2                | A6                       | 9.068                    | A7      | H14 | 2.539   |
| 21.        | A2                | A7                       | 2.144                    | A7      | R15 | 1.139   |
| 22.        | A2                | A8                       | 8.271                    | A7      | R16 | 7.279   |
| 23.        | A2                | D9                       | 8.465                    | A7      | R17 | 10.843  |
| 24.        | A2                | D10                      | 2.62                     | A8      | D9  | 0.967   |
| 25.        | A2                | D11                      | 7.789                    | A8      | D10 | 5.859   |
| 26.        | A2                | H12                      | 11.766                   | A8      | D11 | 4.719   |
| 27.        | A2                | H13                      | 4.941                    | A8      | H12 | 10.448  |
| 28.        | A2                | H14                      | 3.578                    | A8      | H13 | 6.133   |
| 29.        | A2                | R15                      | 1.111                    | A8      | H14 | 11.841  |
| 30.        | A2                | R16                      | 6.019                    | A8      | R15 | 9.239   |
| 31.        | A2                | R17                      | 10.427                   | A8      | R16 | 2.751   |
| 32.        | A3                | A4                       | 5.001                    | A8      | R17 | 7.802   |
| 33.        | A3                | A5                       | 3.952                    | D9      | D10 | 6.151   |
| 34.        | A3                | A6                       | 3.543                    | D9      | D11 | 5.655   |
| 35.        | A3                | A7                       | 7.043                    | D9      | H12 | 11.411  |
| 36.        | A3                | A8                       | 3.605                    | D9      | H13 | 6.633   |
| 37.        | A3                | D9                       | 4.318                    | D9      | H14 | 12.035  |
| 38.        | A3                | D10                      | 3.485                    | D9      | R15 | 9.463   |
| 39.        | A3                | D11                      | 2.495                    | D9      | R16 | 3.262   |
| 40.        | A3                | H12                      | 8.139                    | D9      | R17 | 8.769   |
| 41.        | A3                | H13                      | 2.857                    | D10     | D11 | 5.516   |
| 42.        | A3                | H14                      | 9.358                    | D10     | H12 | 10.258  |
| 43.        | A3                | R15                      | 6.762                    | D10     | H13 | 2.915   |
| 44.        | A3                | R16                      | 1.338                    | D10     | H14 | 6.069   |
| 45.        | A3                | R17                      | 5.925                    | D10     | R15 | 3.437   |
| 46.        | A4                | A5                       | 7.014                    | D10     | R16 | 3.426   |
| 47.        | A4                | A6                       | 8.513                    | D10     | R17 | 8.541   |
| 48.        | A4                | A7                       | 2.883                    | D11     | H12 | 5.876   |
| 49.        | A4                | A8                       | 8.223                    | D11     | H13 | 4.498   |
| 50.        | A4                | D9                       | 8.64                     | D11     | H14 | 10.841  |
| Virtual Sc | rooning of Paltor | uravir which was First U | iv-1 Integrase Inhibitor | SEKADAM |     | - 136 - |

Virtual Screening of Raltegravir which was First Hiv-1 Integrase Inhibitor S.S.KADAM



| r   |    |     | 1      |     |     |        |
|-----|----|-----|--------|-----|-----|--------|
| 51. | A4 | D10 | 3.089  | D11 | R15 | 8.4    |
| 52. | A4 | D11 | 6.441  | D11 | R16 | 3.637  |
| 53. | A4 | H12 | 9.811  | D11 | R17 | 3.468  |
| 54. | A4 | H13 | 2.534  | H12 | H13 | 8.809  |
| 55. | A4 | H14 | 5.409  | H12 | H14 | 13.748 |
| 56. | A4 | R15 | 3.381  | H12 | R15 | 11.967 |
| 57. | A4 | R16 | 5.484  | H12 | R16 | 9.422  |
| 58. | A4 | R17 | 8.783  | H12 | R17 | 2.734  |
| 59. | A5 | A6  | 5.048  | H13 | H14 | 7.677  |
| 60. | A5 | A7  | 8.276  | H13 | R15 | 5.272  |
| 61. | A5 | A8  | 2.801  | H13 | R16 | 3.423  |
| 62. | A5 | D9  | 2.423  | H13 | R17 | 7.285  |
| 63. | A5 | D10 | 4.545  | H14 | R15 | 2.633  |
| 64. | A5 | D11 | 6.131  | H14 | R16 | 9.493  |
| 65. | A5 | H12 | 11.986 | H14 | R17 | 12.98  |
| 66. | A5 | H13 | 5.327  | R15 | R16 | 6.861  |
| 67. | A5 | H14 | 10.181 | R15 | R17 | 10.85  |
| 68. | A5 | R15 | 7.664  | R16 | R17 | 7.105  |

## **RESULTS AND DISCUSSION:**

A result depicted in Table 1 has explained the co-ordinates and radius of each pharmacophore feature of Raltegravir compound. The Table 2 has explained all details measurements of each pharmacophore and core molecule 1,3,4-oxadiazole within the Raltegravir compound(FDA approved drug).

The donating and accepting ability of the small molecules was measured which can predict how well the group can donate or accept the electrons on the basis of Density Functional Theory (DFT).

#### **CONCLUSION:**

A good pharmacophore model should predict the correct activity range of the independent molecules which can be synthesized and evaluated *in silico*. i.e. the possible binding modes and enzyme inhibition mechanism.

In order to further understand the effect of 5-substituted-1,3,4-oxadiazole-2amine activity, we synthesized various derivatives of it and evaluated *in vitro*, *in silico* accordingly.

#### **ACKNOWLEDGEMENT:**

My sincere thanks to Syed Hussain Basha Innovative Informatica Technologies ,Hyderabad, for assisting in producing the data required for this research work.

#### **REFERENCES:**

- [1] Sugunadevi Sakkiah, Chandrasekaran Meganathan, Young-Sik Sohn,
- a. Sundaraganesan Namadevan and Keun Woo Lee Int. J. Mol. Sci. **2012**, 13, 5138-5162.



- [2] Kavya Ramkumar, Vladimir N. Yarovenko, Alexandra S. Nikitina, Igor V. Zavarzin Mikhail M. Krayushkin, Leonid V, Kovalenko, Adrian Esqueda, Srinivas Odde and Nouri NeamatiMolecules **2010**, 15, 3958-3992.
- [3] Cledualdo Soares de Oliveira, Bruno Freitas Lira, José Maria Barbosa-Filho, Jorge Gonçalo Fernandez Lorenzo and Petrônio Filgueiras de Athayde-Filho Molecules **2012**; 17: 10192-10231.
- [4] Boström, J.; Hogner, A.; Llinàs, A.; Wellner, E.; Plowright, A.T. Oxadiazoles in medicinal chemistry. J. Med. Chem. **2012**; 55: 1817–1830.
- [5] Savarino, A.Expert Opin. Investig. Drugs **2006**; 15:1507–1522.
- [6] James, N.D.; Growcott, J.W. Zibotentan. Drugs Future **2009**; 34:624–633.
- [7] Vardan, S.; Mookherjee, S.; Eich, R. Clin. Pharm. Ther. **1983**; 34:290–296.
- [8] Schlecker, R.; Thieme, P. C. Tetrahedron **1988**; 44, 3289–3294.
- [9] Ogata, M.; Atobe, H.; Kushida, H.; Yamamoto, K. J. Antibiot. **1971**; 24:443–451.
- [10] Johns, B. A. PCT Int Appl. WO 101512; 2004.
- [11] Lipinsky, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Delivery Rev. **1997**, 23, 3–25.