

Synthesis and Characterization of N-salicylidèneglycinate (KHL) And caffeine complexes with Cd (II),Cu(II),Ni(II), Zn (II)

¹ EL AMANE MOHAMED*, ¹BOUHDADA MOHAMED, ² HADDAD MUSTAPHA

¹ Equipe Métallation, complexes moléculaires et applications, Université Moulay Ismail, Faculté des sciences, Meknès, BP 11201 Zitoune, 50000 Meknès.
 ² Equipe spectrométrie archéométrie et physico-chimie des matériaux Université Moulay Ismail, Faculté des sciences, Meknès, BP 11201 Zitoune, 50000, Meknès.
 *Corresponding author: lelamane@gmail.com

Abstract

A two series of metal complexes $[M(LH)_2(H_2O)_2]$ and $[M(LH)_2(caf)_2]$ M=Cu(II),Ni(II),Cd(II),Zn(II),caf= caffeine, KHL=N-salicylidèneglycinate, have been synthesized and characterized by metal analysis, molar conductivity ,infrared, electronic and EPR spectral measurements N-salicylidèneglycinate (KHL) were obtained by condensation of salicylaldehyde, glycine and KOH. The stoichiometries reaction between the metal(II) ion and (KHL) ligand in molar ratio of M:LH(1,2) resulted in the formation of the metal complexes of type [M (LH)₂ (H₂O)₂] or molar ratio of M:LH:Caf(1,2,2) of type [M (LH)₂ (caf)₂] (where M=Cu(II),Ni(II),Cd(II),Zn(II),caf= caffeine. The ligand LH acts in a chelate manner (NO) donor and coordination of water or caffeine by N9 coordination through metal ion.

Keywords: caffeine, N-salicylidèneglycinate, complexes, molar conductivity.

Introduction

Schiff base ligand and transition metal complexes with Schiff bases have expanded enormously and Embraced wide and diversified subject comprising west areas of chemical, physical, and biological [1] etc. Many studies have been done on transition metal complexes of Schiff base due to the fact that Schiff bases offer opportunities for inducing substrate chirality [2], tuning metal centered electron factor, enhancing the solubility and stability of either homogeneous or heterogeneous catalysts [3] as well stabilizing Schiff bases ligand are able to coordinate many different metals and stabilize then in various oxidation states [4].

Amino acids constitute the building blocks of proteins [5] and are chemical species indispensable for performing a huge number of biological functions as exemplified by the role of enzyme [6] Considerable interest have been developed in transition metal complexes with amino acids Schiff base ligand as structural models. The complexes [M(salgly)₂(OH)₂],[M(salgly)₂(caf)₂],caffeine have been synthesized and characterized by analysis of metal, caffeine, molar conductivity infrared, UV-visible and EPR spectroscopy.

Experimental

All the chemicals were obtained from commercial sources and were used without purifications: KOH,Nicl₂ H₂O BDH, Cdcl₂ 1/2H₂O Panreoc, Cucl₂ 2H₂O LOBA chemie, Zncl₂2H₂O LOBA chemie, glycine norma pur analytical reagent 100°/ $_{\circ}$,Salicylaldehyde >=98°/ $_{\circ}$ SAFC , Ethanol Fischer, acetone Fischer, Caffeine Riedl-deHaen.A.G.

Preparation of the N-salicylidèneglycinate Ligand (KHL)

N-salicylidèneglycinate ligand (KHL) formed from salicylaldehyde and glycine was prepared by adding (1,04ml, 10^{-2} mole) Salicylaldehyde in 10 ml anhydrous ethanol to the some volume of ethanolic, glycine (0,75ml, 10^{-2} mole) with potassium hydroxide (1,12g, 10^{-2} mole). The mixture was refluxed for three hours. The yellow formed precipitate was filtered, washed several times with ethanol, ether, the yield of the reaction was $76^{\circ}/_{\odot}$.

Preparation of [M(LH)2(OH2)2](1,2,3,4) M=Cu(II)(1),Ni(II)(2) Cd(II)(3),Zn(II)(4).

The Complexes $[M(LH)_2(H_2O)_2](1,2,3,4)$ were prepared using general method for example complexes of Cu cl₂ 6H₂O (II) with N-salicylideneglycinate (KLH) were synthesized by mixing 10 ml ethanol of 0,43g,(2mmole) ligand (KLH) with ethanolic Solution of(0,17g (1mmole),(Cucl₂,6H2O)). The mixture was refluxed three hours. The precipitates were filtered and wasted several times with acetone and Ethanol the yield of the reaction was 63°/ \circ .

Preparation of [M(LH)2(caf)2](5,6,7,8) (M = Cu(II)(5) ,Ni(II)(6) ,Cd(II)(7) ,Zn(II)(8) caf=caffeine).

Complexes of $[M(LH)_2 (caf)_2]$ were prepared using a general procedure. The complexes $[M(LH)_2]$ (caf)₂] was prepared by [M(LH)₂(OH₂)₂]by caffeine in the reaction mixture or by mixing ethanolic solution (15ml). The N-salicylideneglycinate ligand (KHL) and caffeine (2mmole) with an ethanolic solution (10ml) of 1 mmole of (MCl₂, xH₂O) salts. The precipitates were filtered, and washed with acetone The analytical data of complexes $[M(LH)_2]$ and ethanol. $(caf)_2$ (5,6,7,8) M=Cu(II)(5),Ni(II)(6),Cd(II)(7),Zn(II)(8) is summarized.

Results and Discussion

FTIR spectroscopy of the free ligand N-salicylidèneglycinate (KHL)

Infrared Spectra provide valuable information regarding the nature of the functional groups, structure of the mixed ligand and the mode of coordination of it to the metal ion in the complexes. The N-salicylideneglycinate ligand (KHL) was synthesized by condensation of salicylaldehyde, and glycine. The infrared spectrum for free ligand (KHL) was obtained from FTIR in KBr in the range (4000- 400) cm⁻¹ figure (1). The infrared spectrum of the ligand (KHL) show vibrations bands with the frequencies 3340 cm⁻¹ attributed ν (OH), and 3058 cm⁻¹ attributed ν (CH), The stretching vibration ν (C=N) observed at 1611 cm⁻¹, the stretching frequency observed at 1520cm⁻¹ attributed

(vC-C/vC-N), The bands at 1390 cm⁻¹ and at 1611 cm⁻¹ can be assigned to the symmetric and antisymmetric stretching vibration of the –COO⁻ group, respectively[7,13]. The band at 1315 cm⁻¹ due to bending mode of the phenolic –OH group (δ OH)[16].And the strong band around 1194 cm⁻¹ attributed v(C-O), and the band 1222 cm⁻¹, 1115 cm⁻¹, 1054 cm⁻¹ attributed (δ ArCH) in plane deformation, 936 cm⁻¹,900,741 cm⁻¹ attributed (δ ArCH) out plane deformation, and 506 cm⁻¹,527 cm⁻¹ attributed (δ Ar CH) in plane ring deformation and 487 cm⁻¹,410 cm⁻¹ attributed (δ Ar CH) out plane ring deformation were observed for ligand respectively Table (1)[7-8].

Figure 1. Infrared spectra of the ligand N-salicylidèneglycinate (KHL) in KBr

Ligand (KHL)	Attribution		
3340w	v OH		
3058 m	v CH		
2807w ,2615w	ν CH ₂		
1641 s	v C=N		
1611vs	$vC = C/v_a CO_2^{-1}$		
1520s	vCC/vCN		
1460m	δCH ₂		
1390vs	v _s CO ₂ -		
1315 s	бОН		
1194 vs vC-O			
1222,1115 ,1054m	δ (Ar CH) In plane def		
936, 900m ,741 vs	δ (Ar CH) out plane def		
506 , 527s	δ (Ar CH) In plane ring def		
487,410w	δ (Ar CH) out plane ring def		
S: strong m: medium w: weak	vs: very strong vw: very weak		

Table 1.	Infrared spectra	data of the liga	nd N-salicylidènegly	cinate free (KHL) in KBr
----------	------------------	------------------	----------------------	--------------------------

FTIR spectroscopy for complexes [M (LH)2 (OH2)2](1, 2,3,4), M=Cu (II)(1), Ni(II)(2),Cd(II)(3),Zn(II)(4).

The infrared spectrum of ligand N-salicylideneglycinate complexes was recorded within the (4000-400) cm⁻¹ range (figure 2), and compared with that of the four complexes $[M(LH)_2(OH_2)_2]$ M=Cu(II)(1),Ni(II)(2])Cd(II)(3),Zn(II)(4)Table (2).

Figure 2 Infrared spectra of complex $[Cd (LH)_2(OH_2)_2]$ in KBr.

M=Cu(II)(1),Ni(II)(2) Cd(II)(3),Zn(II)(4).					
	1	2	3	4	
Assignment	$[Cu(LH)_2(OH_2)_2]$	[Ni	[Cd	[Zn	
		$(LH)_{2}(OH_{2})_{2}]$	$(LH)_{2}(OH_{2})_{2}]$	$(LH)_2(OH_2)_2]$	
		· · · · · -		· · · · · -	
$vOH (OH_2+OH)$	3400 L	3360 L	3400L	3300L	
v CH	3011m	3021m	2950 m	3000 m	
v C=N	1631vs	16 36vs	1635 vs	1633 vs	
$vC=C/v_aCO_2^-$	1600s	1589s	1598 s	1600 s	
vCC/vCN	1539m	1529s	1535 s	1530 s	
δCH ₂	1457s	1459vs	1460 vs	1460 s	
v _s CO ₂	1350s	1384s	1380 s	1360 s	
δОН	1308 s	1305s	1310 s	1305 s	
vC-O	1191m	1185s	1190 m	1190 s	
In plane def CH _{ar}	1149m,1130m	1150s,1130s	1130 m,1080s	1160 m,1130 s	
	1088w,1038m	1068m,1038m	1040m,1020m	1075 m 1040m	
CH aromatiques	935w,904w	945m,853w	950w, 900 w	950w, 900m	
$W,\rho(OH_2)$	864w,750s	792m,761m	860 m, 770w	860w,760 w	
ρCH_2	670w	669m	665m	660w	
δ С=О	608m	587m	600m	605m	
vM-N	577m	562m	560m	570m	
def CH ar	526m	522m	540 m,520w	540m, 530w	
vM-O	455w	461w	460w	460w	
S: strong m:medium w: weak vs: very strong vw: very weak					

Table 2.Infrared spectra of Metal- N-salicylidèneglycinate complexes [M (LH)₂ (OH₂)₂]in KBr M=Cu(II)(1),Ni(II)(2) Cd(II)(3),Zn(II)(4).

The broad band is the (3500-3400) cm⁻¹ region in all complexes attributed to the presence of water coordinated molecules [9] and υ (OH) phenolic associated the presence of water coordination. FTIR investigation of [Cd (LH)₂(OH₂)₂] complex by HOD isotopic exchange proved to be a very sensitive method for determining OH group coordination [20] The OH stretching v(OH)H2O is observed at 3450 cm-1. However, in the range of v(OH)HOD vibrations of HOD molecules, one band appears at about 2925 cm-1.The isotopic ratios υ (OH)/ δ (OD) have values of 1.18.

The phenolic group which may be attributed ArCH to v(OH) vibration of coordinated water and phenolic group associated the appearance of bands around (1313-1305)cm-1 and(864-853)cm-1 due to bending $\delta(OH)$ phenolic group and wagging, rocking modes of coordinated water molecules. The (10-14) cm-1 shift in intense band appearing in the range (1636-1631)cm-1 [11]for all the complexes has indicated the involvement of nitrogen atom of azomethine group and bending $\delta(OH)$ water coordination for metal . For as the coordination of the carboxylate ion is concerned the information is drawn from the position and difference of stretching vas and vsCOO- frequencies occurring at about (1600-1590) cm-1, (1360-1385)cm-1 respectively in the spectrum of the complexes. This data is compared with glycine and metal glycine complexes (1,2,3,4). The frequency difference Δv >200 cm-1 between asymmetric and symmetric stretching vibration attributes at monodentate coordination of the carboxyl group of the glycine with the metal ions. The new stretching vibration observed in the lower frequencies the frequencies, noticed at about (577,560) cm-1 and (455,461) cm-1 respectively attributed for M-N and M-O band[10-11]. The infrared results show that the metal is coordinated through nitrogen atoms azomethine and oxygen atoms carboxyl- ate of the glycine besides water molecules.

FTIR spectroscopy for caffeine N-salicylidèneglycinate complexes

[M(LH)2(caf)2](5,6,7,8), M=Cu(II)(5), Ni(II)(6), Cd (II)(7), Zn (II)(8), caf = caffeine

FTIR spectra and vibrationnal frequencies assignment the corresponding vibrations are observed in infrared spectra table (3). It may be noted that the spectra of the complexes obtained [M(LH)2(caf)2], M=Cu(II),Zn(II),Cd(II),Ni(II) are similar in the range (4000-400) cm-1 (figure3.1, figure3.2, figure3.3 and figure3.4). The broad band noticed at 3350 cm-1 is confirmed by thermal analysis and attributed of stretching v(OH) hydratation water. The infrared spectra show characteristic weak bands at (3100 cm-1 and 2950cm-1 shifted to lower frequencies by (5-14) cm-1 compared with caffeine free.

Figure 3.1Infrared spectra of complexes [Cu(LH)₂ (caf)₂] (5) in KBr.

Figure 3.2. Infrared spectra of complexes [Ni(LH)₂ (caf)₂] (6) in KBr

Figure 3.3. Infrared spectra of complexes [Cd(LH)₂ (caf)₂] (7) in KBr

Figure 3.4. Infrared spectra of complexes [Zn(LH)₂ (caf)₂] (8) in KBr

TABLE 3.INFRARED SPECTRA OF N- SALICYLIDÈNEGLYCINATE -M-CAFFEINE
COMPLEXES [M(LH)2(CAF) ₂] IN KBR
M=CU(II)(5) NI(II)(6) CD(II)(7) ZN(II)(8) CAE = CAEFINE

Assignment	Free	5	6	7	8
0	ligand				
	Caffeine	[Cu (LH) ₂	[Ni (LH) ₂	[Cd(LH) ₂	[Zn(LH) ₂
		$(caf)_2$]	$(caf)_2$]	$(caf)_2$]	$(caf)_2$]
νHO		3450 L	3400,3350 L	3450,3330 L	3450 L
v CHar	3114m	3100 w	3100w	3100w	3100w
ν CH3+ν CH2	2955w	2950 vw	2948w,	2950w	2950w,
			2850vw		2900vw
v C=0 caf	1702vs	1698 s	1697vs	1692vs	1695vs
v C=0	1662s	1650s	1648vs	1650vs	1655vs
ν C=N		1625 vs			1627vs
vC=Ccaf/vC=Ca	1600m	1600 e	1590vs	1590s	1600vs
r					
/vaCO2-					
δ HCN + vring	1551 s	1540 s	1540 s	1540 s	1540 vs
imidazole+					
vring pyrimidine					
$+ \nu CC/\nu CN$					
δCH3+ δCH2	1487m,14	1474 s ,1420e	1472vs, 1444s	1480s, 1442m,	1470 vs,
vC-N	66m	1400 s	1400m	1390m	1440vs
	1431m				1400 vs
	1405m	1250	12(0	1250	12.00
vsCO2-		1350 s	1360m	1350m	1360m

vring(imidazole)	1227	1310 m	1323m	1320w	1225
+	1327w				1325m
vring(pyrimidine					
) 80H					
δ CH cof±δ C-	1241vs	1240 m	1240vs	1240s	1240s
Oph	121115	12 TO III	121005	12105	12105
δ (CH) + vC-O	1213m	1200 w	1185s	1190m	1195s
· · · ·	1190m				
δCH In Plane		1158w ,1130m	1155w, 1122m	1150w, 1120w	1160s, 1130m
def		1080m	1080w	1070w	1080m
$\rho r(CH3) +$	1026s	1022m	1025s	1025s	1025s
ρr(CH)					
v(N-CH3) +	974s	990 w,970 m	970 m	974w	975m
∂ ring(imidazole)					
$\rho r(CH3) + v(N-$	860m	850m	860m	860w	865m
$CH3) + \delta(CO)$		0.40 000	0.40 0.00	000	055 020
CH		940w,922w	940w,920w	925vw,900w	955m,930m
Out-of-plane		900w	/90w, /60m	/90vw, /60s	900m
def		740	740	7.4.5	
yring(pyrimidine	746	740vs	740vs	745vs	760
)+	/46VS				/50vs
yring(imidazo)	(10	(10 -	(10 -	(10	(10-
⊿ring (imida=ala)	610m	610 S	610 S	610m	6105
(IIIIdazole)					
O LUU-		570 525	545	520	560m 520m
CH ring der		570W, 525W	545W, 510W	520W	560m, 550m
Tcaffeine	481m,450	478m	476w	480w	480m
	m, 420w				
vM-N		440w	440w	440w	442w
vM-0		420w	420w	420w	423m
S: strong	m:mediu	m w: weak	vs: very str	ong vw:	very weak

The carbonyl group in caffeine and their complexes [M(LH)2(caf)2], M= Cu(II),Zn(II),Cd(II), Ni(II) exhibits a strong absorption bands due the v(CO),stretching vibration and is observed in the region (1698-1648)cm-1 .Caffeine free contain two carbonyl vibration in the meta position. The strong bands observed are considered to be due to v(CO) symmetric and asymmetric v (CO)+(C=N)caf [12]. The infrared spectrum of the complexes is characterized by significant shift (10cm-1) for asymmetric v (CO)+(C=N) the to lower frequencies. The shift frequencies are observed for vibration (δ HCN+ wring imid +wring pyrimi) of 10cm-1were attributed for authors [10-12], by coordination on the nitrogen N9 atom of caffeine ligand.

The bands noticed at 1625cm-1 and 1627 cm-1 for copper and zinc complexes is shifted to lower frequencies by 10 cm-1 corresponding of azomethine group coordinated for metal atom. As for as the

coordination of the carboxylate ion is concerned the information is draw from the position and difference of stretching vasymmetric and vsymmetric COO- frequencies occurring about (1600-1590) cm-1 ,(1360-1350) cm-1 and Δ = (vas-vs)= 240 cm-1 respectively in the spectrum of the complexes, are behaving in monodentate carboxylate ligand [13-17].The bands noticed in the range (1325-1310) cm-1 and (1195-1185) cm-1 in the complexes table (3) assigned respectively to bending δ (ph Ar-O) and stretching vC-O, phenolic group. The news band in the range (570-545) cm-1 and 440cm-1 may be assigned for the stretching v M-O (azomethine+caffeine) and v M-O (carboxylate) respectively[18] table (3). It this case, the ligands are behaving in bidendate chelate coordination by N nitrogen atoms (azomethine) and oxygen atoms carboxyl-to glycine for metal ions besides caffeine coordinated by N9 nitrogen atom.

EPR Spectra

The EPR spectra of the [Cu (LH)2 (caf)2] complex measured in the solid state gave a single, very broad line with g = 2.086. The value of g = 2.086 observed for [Cu (LH)2 (caf)2] at room temperature are normal for typical mononuclear copper complexes.

Figure 4EPR of complexes [Cu(LH)2 (caf)₂] (8) ,caf= caffeine.

Molar conductivity

The molar conductivity of the Schiff base caffeine complexes were measured using 10-4M DMSO solvent at room temperature. The conductivity values of the complexes are in the range (3,89 - 9,68) Ohm-1 cm2 mol-1. These lower values of molar conductivities indicates the non-electrolyte behavior of the Schiff base caffeine complexes of Cu(II), Ni(II), Cd(II) and Zn (II).

UV-visible spectra for ligand LH and their complexes [M(LH)2(caf)2](5,6,7,8) M=Cu(II)(5),Ni(II)(6),Cd(II)(7),Zn(II)(8) ,KHL =N- salicylidèneglycinate, caf=caffeine.

The electronic spectra data of free ligands in the UV-visible region were studied in DMSO solvent shows strong absorption band of salicylideneglycine at 218 nm and 274 nm is attributed to $\pi \rightarrow \pi^*$ transition another bands at 319 nm, 386 nm respectively which is assigned to $n \rightarrow \pi^*$ transition (figure 5.1, figure 5.2, figure 5.3 and figure 5.4). The caffeine spectra shows three absorption bands at 275 nm is attributed to $\pi \rightarrow \pi^*$ transition, another bands at 316nm, 365nm respectively which is assigned to $n \rightarrow \pi^*$ transition[14-15]. The spectrum of the complexes [M(LH)2 (caf)2](5,6,7,8) M=Cu(II)(5),Ni(II)(6),Cd(II)(7),Zn(II)(8).

Figure 5.2. Electronic spectrum of their complex [Zn(LH)₂(caf)₂] and [Cd (LH)₂(caf)₂] in DMSO, caf=caffeine.

Figure 5.3. Electronic spectrum of the complex [Ni (LH)₂(caf)₂] in DMSO, caf=caffeine.

Figure 5.4. Electronic spectrum of the complex [Cu (LH)₂(caf)₂] in DMSO, caf=caffeine.

The electronic spectrum of Ni(II) complex exhibited absorption bands at 660 nm and 952 nm which are attributed to the electronic transition $3A2g(F) \rightarrow 3T1g(F)$ (v2) and $3A2g(F) \rightarrow 3T1g(F)$ (v1) [19]. The spectrum of Cu(II) complex shows that its bands in the visible region is attributed to the electronic transitions of $2a1g(D) \rightarrow 2b1g(D)$ at 680 nm[19]. Finally, the electronic configuration of Zn (II) and Cd(II) complexes were d10 which confirm the absence of any (d-d) transitions, but the absorption bands in their spectra suffered red shift with hypochromic effect [19]. The prepared complexes were found to be solids insoluble in water and polar solvents but they were soluble in some polar organic solvents like DMF, DMSO table (4).

Table 4 Electronic data for free ligands (KHL) and their complexes [M(LH)₂(caf)₂] in *DMSO (5,6,7,8) M=Cu(II)(5),Ni(II)(6),Cd(II)(7),Zn(II)(8),caf=caffeine. (*DMSO = Dimethylsulphoxide)

	$\lambda_{max}(nm)$	Absorbance	Transitions
Caffeine	275	0.49	$\pi \rightarrow \pi^*$
	316	0.006	n→π*
	365	0.014	$n \rightarrow \pi^*$
N-salicylidèneglycine	218	1,79	$\pi \rightarrow \pi^*$
	274	0,81	$\pi { ightarrow} \pi^*$
	319	0,18	n→π*
	386	0,47	$n \rightarrow \pi^*$
	205	3,27	Transfer de charge
$[Cu (LH)_2(caf)_2]$	233	1,46	Transfer de charge
	269	1,35	Transfer de charge
	350	0,16	M →L
	680	0,03	$^{2}a_{1g}(D) \longrightarrow ^{2}b_{1g}(D)$
	211	3,88	Transfer de charge
$[Ni (LH)_2(caf)_2]$	233	3,34	Transfer de charge
	269	2,76	Transfer de charge
	356	0,44	M → L
	660	-0,0008	$^{3}A_{2g}(F) \rightarrow ^{3}T_{1g}(F)(\upsilon_{2})$
	952	-0,0005	$^{3}A_{2g}(F) \rightarrow ^{3}T_{1g}(F)(\upsilon_{1})$
	220	1,48	Transfer de charge
$[Cd (LH)_2(caf)_2]$	258	0,75	M→ L
	378	0,32	shift with hypochromic
			effect
$[Zn (LH)_2(caf)_2]$	209	3 ,65	Transfer de charge
	261	1,47	M→L
	364	0,30	shift with hypochromic
			effect

Conclusions

In this study two series of complexes [M (LH)2 (H2O)2] and [M (LH)2 (caf)2] the formulation were in accordance with the data of analysis molar conductivity, IR,UV-visible and EPR spectra. The low molar conductivity valeurs of the complexes indicate them to be non-electrolytes. The spectroscopic data indicates that the eight complexes are all containing a bidentate N-salicylideneglycinate with azomethine nitrogen and carboxyl oxygen as two donor atoms and coordination of two water or two caffeine to metal ion. The UV-visible and EPR spectral data suggest the octahedral geometry for the [M(LH)2 (H2O)2] and [M(LH)2 (caf)2] complexes.

References

- 1. Pier Giorgio Cozzi. Chem.Soc.Rev. 2004, 33410.
- 2. K.H Zimmerman, An Introduction to proteins informatics, Kluwer.Acad.Pub, London, 2003.
- 3. H-Y Zhao, Y-H Xing, Y-Z Cao, Z-P Li, O-H Wei, X-Q Zeng, M-F Ge, J.Mol.Struc.2009,938, 54.
- 4. J.S. Skorsepa, K. Cryoryova, H. Melmik, J. Thermal Analysis, 1995, 44, 169.

- 5. N. Goswami, D.M. Eichhorn, Inorg.Chim.Acta 2000, 303, 271.
- 6. E. Carner, M. Donglas, H.W. Wan Doorne, A.J. Ibers, T.Norton, M. Kashiwagi, Inorg. Chem., 1981,20, 2457.
- 7. R.A. Nyquist infrared, Raman and Nucleon Magnétic Resonance spectre V1 Elsevier, 2001.
- 8. R.A. Nyquist interpreting Infrared, Raman and Nuclear Magnetic Resonance spectre, variables in data interpreting of infrared and Raman spectra V2,Elsevier, 2001.
- 9. B. Jezowska, J. Lisowski, and P. Chmielewski, Polyhedron, 1988, 7, 337.
- 10. K. Nakamoto infrared spectra in Inorganic and coordination compound Part A,B. 2003, Wiley NY
- (a) A.A.OSO Wole,G.A Kola wole,O.E Fagade, Synt React Inorg Met-Org Chem .2005,35,829.
 (b) -R.K Dubey,U.K Dubey,C.M Mishra Tran Met Chem .2006 , 31, 849.
 (c)M.H.E Chan,K.A Crouse,MIM Tahir,R Rosli,N.Umar-Tsafe A.R Couley,Polyhedron. 2008, 4,1141.
- 12. F.Ucun.Spectrochimica. Acta PartA, Biomol.Spec . 2007, 67,342-349.
- 13. A.S.P.Azzouz, R.T. Ali, Synthesis of Schiff Bases Derived From Benzaldehyde and
- Salicylaldehyde With Some Amino Acids by a New Develop Method, National Journal of Chemistry, 2010, Volume 37, 158-168
- 15. (a) R.Katwal, H.Kaur, B.K. Kapur Sci.Rev Chem Comm. 2013, 3 (1) 1-15.
 - (b) A.A.Ikotun, G.O Egharevba, G.A.Obafemi, A.O.Owoseni. J.Chem Pharm Res. 2012, 4(1)-416.
 - (c) J.Ikbal, S.A. Tirmizi, F.H.Wattoo, M.Imran M.H.S.Wattoo, S. Sharfnddin, S.Latif Jurk.J.Biol. 2006, 30, 1-4.
 - (d) P.Vis .Wanathamurthi, R.Kar.Vembu, V.Thanq bees waron, K.Nataro Jan.J.Chem Sci.2005,3,235.
 - (e) N.Raman, S.Ravi chan.dron, C.Than.garaja J.Chem Sci.2004, 4,215.
 - (f) M.D Zhou, Y.yu, A.Capapé, K.R. Jain, E.Her, dtweck, XRLi, J Li, SL Zang, F.E Kuhn Chem. Asian. 2009, 4 (3) 411.
- 16. M.Thomas, A.Kulandaisamy, A.Manohar Int.J.Chem Tech Research. 2012, 4 (1) 247.
- 17. X.Tai, X.Yin, Q. chen, M. Tan, Molecules 2003, 8,439.
- 18. Ja'n Vanc`o, Jaromı'r Marek , Zdene`k Tra'vnı'c`ek , Eva Rac`anska', Jan Muselı'k e, Ol'ga
- 19. S' vajlenova, Journal of Inorganic Biochemistry 102 (2008) 595-605
- 20. A. Jain, R. Goyal, and D. D. Agarwal, J. Inorganic Nuclear Chem. 2005, 43.
- 21. Shayma A. Shaker, Yang Farina, Sadia Mahmmod and Mohean Eskender, ARPN Journal of Engineering and Applied Sciences, NOVEMBER 2009, VOL.4, NO. 9.
- 22. B. Berglund, J. Lindgren and J. Tegenfeldt, O-H and O-D stretching vibrations in isotopically dilute HDO molecules in some solid hydrates, J. Mol. Struct. 43(2), 1978, 169–177.