

Comparison between chemically treated sisal fiber with Al_2O_3 and Fe_2O_3 : -it's dielectric loss

ASIF JEHAN

Motilal vigyan mahavidhalya Bhopal (M.P.) India, asifjehan14@gmail.com

Abstract

Aluminum oxide and iron oxide synthesized through sintering route. The present research work deals with ferrite and aluminum composite prepared using chemical reactions. Aluminum nitrate, ferric nitrate and ammonium chloride doped with sisal fiber has been prepared. The comparative studies of aluminum oxide and iron oxide were examined through dielectric measurement.

Key words: - Al₂O₃, Fe₂O₃, sintering method, tanδ

Introduction

The crystalline structure of LiAlO₂ depends mainly on the preparation methods. Many researches prepared LiAlO₂ with difAlrent structures. V.R. Galakhov et al. prepared α-LiAlO₂ with Fm-3m space group by using solid state reaction and M. Tabuchi et al. prepared α-LiAlO₂ with Fm3m space group by hydrothermal synthesis [1-3]. Similarly, β-LiAlO₂, γ- LiAlO₂ and layered LiAlO₂ are prepared by hydrothermal synthesis and other methods. Corrugated LiAlO₂ and Goethite type LiAlO₂ are prepared by ion exchange method. In comparison with the conventional solid phase synthesis methods, hydrothermal method is one of the simplest and best methods to prepare lithium based cathode materials [4-7]. In case of the electrical properties of the oxides, grain boundaries play an important role. The measurement of conductivity and permittivity shows dispersion behavior which offers an opportunity to gain some information of ionic migration process. Considering the significance, the electrical conductivity studies on various lithium-based oxides such as LiCoO₂, LiCeO₂, LiSmO₂, Li2SnO₃, Li2MnO₃, LiMn₂O₄, and Li2V₂O₅, and others have been reported in the literature [8-11].

However, to the best of our knowledge, there are meager reports on electrical and dielectric properties of LiAlO₂. A detailed study on the temperature and frequency depended electrical properties is necessary to understand the conduction mechanism in LiAlO₂ for effective utilization as cathode material in the fabrication of lithium ion batteries. In the oxides of aluminum a-Al₂O₃ is the most stable compound. For the non-existence of Al++ ions a-Al₂O₃ has higher electrical resistivity than other oxides of aluminum such as Al₃O₄, AlO, and Aluminates. It has been reported, however, that at the temperature above 1200°C there is the possibility of the appearance of Al++ ions in a-Al₂O₃. When the oxides contain Aluminum ions, the hopping of electrons between Aluminum and aluminum ions gives rise to higher conductivity. Thus for samples possessing both the conductive and less-conductive phases the Maxwell-Wagner

interfacial polarizations are observed. With the surface modified by the use of mild reducing condition of sintering Hirbon reported the interfacial polarization in the sintered compacts of a-Al₂0₃. On the other hand, in a-Al₂0₃ containing other ions of different valences such as Ti" ions polarizations due to permanent dipoles of Al++ Al+++ induced by Ti+4 ions were observed at very low temperature [12-15]

LiFeO₂ has various crystalline structures such as α- LiFeO₂, β-LiFeO₂, γ-LiFeO₂, Layered LiFeO₂, Corrugated LiFeO₂, Goethite type LiFeO₂ etc. The crystalline structure of LiFeO₂ depends mainly on the preparation methods. Many researches prepared LiFeO₂ with different structures. V.R. Galakhov et al. prepared α-LiFeO₂ with Fm-3m space group by using solid state reaction and M. Tabuchi et al. prepared α-LiFeO₂ with Fm3m space group by hydrothermal synthesis [16-18]. Similarly, β-LiFeO₂, γ- LiFeO₂ and layered LiFeO₂ are prepared by hydrothermal synthesis and other methods. Corrugated LiFeO₂ and Goethite type LiFeO₂ are prepared by ion exchange method. In comparison with the conventional solid phase synthesis methods, hydrothermal method is one of the simplest and best methods to prepare lithium based cathode materials [19-22]. In case of the electrical properties of the oxides, grain boundaries play an important role. The measurement of conductivity and permittivity shows dispersion behavior which offers an opportunity to gain some information of ionic migration process. Considering the significance, the electrical conductivity studies on various lithium-based oxides such as LiCoO₂, LiCeO₂, LiSmO₂, Li₂SnO₃, Li₂MnO₃, LiMn₂O₄, and Li₂V₂O₅, and others have been reported in the literature [23-26]. However, to the best of our knowledge, there are meager reports on electrical and dielectric properties of LiFeO₂. A detailed study on the temperature and frequency depended electrical properties is necessary to understand the conduction mechanism in LiFeO2 for effective utilization as cathode material in the fabrication of lithium ion batteries.

Material and method

Chemical treatment of fiber

Ferric Nitrate (Fe (NO₃)₃.9H₂O) and ammonium chloride (NH₄Cl) was taken in the ratio 10:4 in 500 *ml* of distilled water. The mixture was stirred till a homogenous solution was obtained. In this mixture 10g of sisal fiber was added and then 1:1 solution of NH₄OH (liquid ammonia) was added to it then left the solution for one hour. Again the mixture thus obtained was dried and then annealed in muffle furnace at 1000°C and kept it at that temperature for 15 min.

The reaction may take place in this way

2Fe $(NO_3)_3.9H_2O + 3NH_4Cl + 3NH_4OH + Fiber \rightarrow Fe_2O_3$: fiber $+ 6NH_4NO_3 + 3HOCl + 18H_2O$

When ferric nitrate reacts with ammonium chloride and ammonium hydroxide along with sisal fiber at 1000°C with ammonium nitrate and HO-Cl (hypoclorous acid) decomposed at such high temperature and only ferric oxide is left.

Aluminum Nitrate (Al (NO_3)₃.9 H_2O) and ammonium chloride (NH_4Cl) was taken in the ratio 10:4 in 500 ml of distilled water. The mixture was stirred till a homogenous solution was obtained. In this mixture 10g of sisal fiber was added and then 1:1 solution of NH_4OH (liquid ammonia) was added to it then left the solution for one hour. Again the mixture thus obtained was dried and then annealed in muffle furnace at $1000^{\circ}C$ and kept it at that temperature for 15 min.

The reaction may take place in this way

$$2Al (NO_3)_3.9H_2O + 3NH_4Cl + 3NH_4OH + Fiber \rightarrow Al_2O_3$$
: fiber + $6NH_4NO_3 + 3HOCl + 18H_2O$

When aluminum nitrate reacts with ammonium chloride and ammonium hydroxide along with sisal fiber at 1000°C with ammonium nitrate and HO-Cl (hypoclorous acid) decomposed at such high temperature and only aluminum oxide is left.

2.2 Nature and structure of sample after firing

The material formed was found to in solid crystals in physical appearance. The sample appeared in powder form and it is like Cole in color. The material formed was found to in soft crystal in physical appearance. The sample appeared in powder form and it is like pale cream in color.

Result and discussion

The electrical properties of the insulating material Al_2O_3 and Fe_2O_3 composite were measured by impedance analyzer these dielectric measurement of Al_2O_3 and Fe_2O_3 composite doped with sisal fiber shown in figures. In the Fig 1-3 represents the graph between frequency and $tan\delta$ for Al_2O_3 and in the Fig 4-6 represents the graph between frequency and $tan\delta$ Fe_2O_3 respectively.

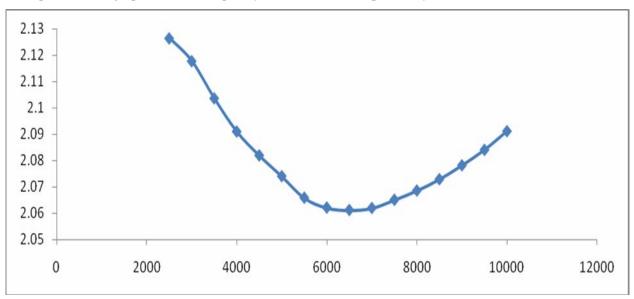


Fig 1

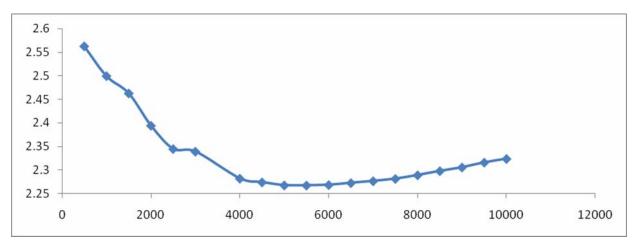


Fig 2

The dielectric constant ε and loss tan δ of Al_2O_3 at room temperature 30°C are measured to be 1.9 to 1.3 respectively and are found to decrease with the increase in the frequency. The value of ε and tan δ are found to different with each other. In fig 1 the variation of dielectric constant at different frequencies with room temperature 30°C for Al_2O_3 is shows that it decreases considerably with increase in frequency.

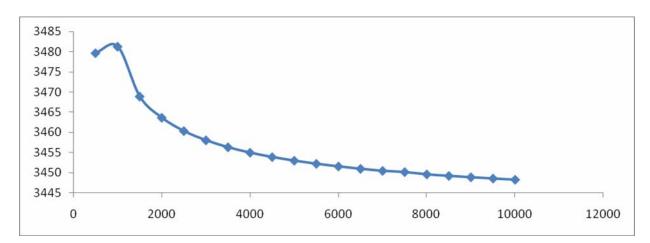


Fig 3

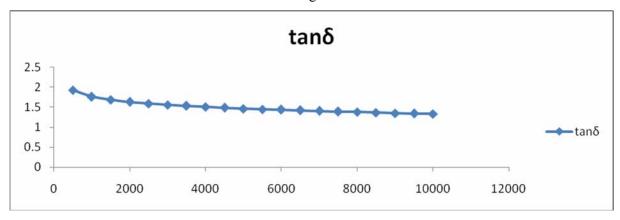


Fig 4

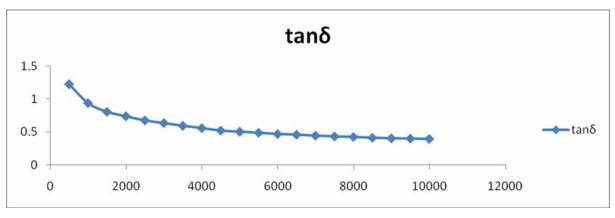


Fig 5

This dielectric dispersion is attributed to the Maxwell and Wagner type of interfacial polarization in agreement with Koop's phenomenological theory [30]. Since polarization decreases with increasing frequency and reaches constant values, a decrease in dielectric constant with frequency is observed.

At lower frequencies, dielectric loss tano is large and it decreases with increasing frequency. The tano is the energy dissipation in the dielectric system, which is proportional to the imaginary part of the dielectric constant. An increase in loss factor at higher frequencies may be due to the series resistance of the electrodes, leads, etc [31-33].

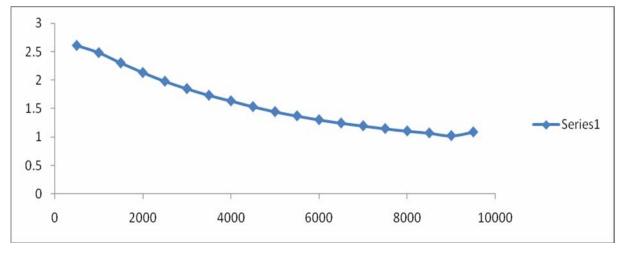


Fig 6

Conclusion

The effect of chemical homogeneity, fine grain structure, particle size and shape of the Alumina and ferrite samples are understood to affect the properties of dielectric behavior. The presence of moisture, cellulose, hemicelluloses, lignin and pectin also contribute towards changes in dielectric properties

References

- [1] Lee, Y.S.; Sato, S.; Tabuchi, M.; Yoon, C.S.; Sun, Y.K.; Kobayakawa, K.; Sato, Y. lectrochem. Commun. 2003, 5, 549. DOI: 10.1016/S1388-2481(03)00118-8
- [2] Masaaki Hirayama.; Hiroki Tomita.; Kei Kubota.; Ryoji Kanno.; J. Power Sources 2011, 196, 809. DOI: 10.1016/j.jpowsour.2010.10.009
- [3] Galakhov, V.R.; Kurmaev, E.Z.; Uhlenbrock, S. Solid State Commun. 1995, 95, 347. DOI: 10.1016/0038-1098(95)00279-0
- [4] Michele Catti.; Merced Montero-Campillo.; J. Power Sources 2011, 196, 3955. DOI: 10.1016/j.jpowsour.2010.11.062
- [5] Santos-Pena, J.; Crosinier, O.; Brousse, T. Electrochimica Acta 2010, 55, 7511. DOI: 10.1016/j.electacta.2009.12.069
- [6] Lee, Y.S.; Sato, S.; Tabuchi, M. Electrochem. Commun. 2003, 5, 549. DOI: 10.1016/S1388-2481(03)00118-8
- [7] Ashutosh Tiwar.; Ajay Mishra, K.; Hisatoshi Kobayashi.; Anthony Turner, P.F. Wiley, USA, ISBN 978-04-709387-99, 2012.
- [8] Prabu, M.; Selvasekarapandian, S.; Kulkarni, A.R.; Hirankumar, G.; Sanjeeviraja, C. J. Rare Earths 2010, 28, 435. DOI: 10.1016/S1002-721(09)60128-9
- [9] Prabu, M.; Selvasekarapandian, S.; Kulkarni, A. R; Hirankumar, G.; Sakunthala. A. Solid State Ionics 2010, 16, 317. DOI: 10.1007/s11581-010-0420-7
- [10] Sung-Woo Kim,.; Su-Il Pyun. J. Electroanalytical. Chem. 2002, 528, 114. DOI: S0022-0728(02)00900-2
- [11] Vijayakumar, M.; Selvasekarapandian, S.; Kesavamoorthy, R.; Koichi Nakamura.; Tatsuo Kanashiro. Mater. Lett. 2003, 57, 3618. DOI: 10.1016/S0167-577X(03)00137-X
- [12] P. M. Hansen, Constitution of Binary Alloys, McGraw Hill Book Company New York, (1958) 688.
- [13] J. C. Maxwell, Electricity and Magnetism, Oxford University Press, London (1873), vol. 1, Sec. 328.
- [14] K. W. Wagner, Ann. Physik, 40, 817 (1913); Arch Electroch. 2, 371 (1914).
- [15] R. B. Hirborn, J. App. Phys. 36, 1553 (1965).
- [16] Lee, Y.S.; Sato, S.; Tabuchi, M.; Yoon, C.S.; Sun, Y.K.; Kobayakawa, K.; Sato, Y. lectrochem. Commun. 2003, 5, 549. DOI: 10.1016/S1388-2481(03)00118-8
- [17] Masaaki Hirayama.; Hiroki Tomita.; Kei Kubota.; Ryoji Kanno.; J. Power Sources 2011, 196, 809. DOI: 10.1016/j.jpowsour.2010.10.009

- [18] Galakhov, V.R.; Kurmaev, E.Z.; Uhlenbrock, S. Solid State Commun. 1995, 95, 347. DOI: 10.1016/0038-1098(95)00279-0
- [19] Michele Catti.; Merced Montero-Campillo.; J. Power Sources 2011, 196, 3955. DOI: 10.1016/j.jpowsour.2010.11.062
- [20] Santos-Pena, J.; Crosinier, O.; Brousse, T. Electrochimica Acta 2010, 55, 7511. DOI: 10.1016/j.electacta.2009.12.069
- [21] Lee, Y.S.; Sato, S.; Tabuchi, M. Electrochem. Commun. 2003, 5, 549. DOI: 10.1016/S1388-2481(03)00118-8
- [22] Ashutosh Tiwar.; Ajay Mishra, K.; Hisatoshi Kobayashi.; Anthony Turner, P.F. Wiley, USA, ISBN 978-04-709387-99, 2012.
- [23] Prabu, M.; Selvasekarapandian, S.; Kulkarni, A.R.; Hirankumar, G.; Sanjeeviraja, C. J. Rare Earths 2010, 28, 435. DOI: 10.1016/S1002-721(09)60128-9
- [24] Prabu, M.; Selvasekarapandian, S.; Kulkarni, A. R; Hirankumar, G.; Sakunthala. A. Solid State Ionics 2010, 16, 317. DOI: 10.1007/s11581-010-0420-7
- [25] Sung-Woo Kim,.; Su-Il Pyun. J. Electroanalytical. Chem. 2002, 528, 114. DOI: S0022-0728(02)00900-2
- [26] Vijayakumar, M.; Selvasekarapandian, S.; Kesavamoorthy, R.; Koichi Nakamura.; Tatsuo Kanashiro. Mater. Lett. 2003, 57, 3618. DOI: 10.1016/S0167-577X(03)00137-X