

Spectral and Thermal Properties of Tb³⁺ Doped in Lead Lithium Borophosphate Glasses

S. L. MEENA

Ceremic Laboratory, Department of physics, Jai Narain Vyas University, Jodhpur 342001(Raj.) India E-mail address:shankardiya7@rediffmail.com

Abstract

Glass sample of Lead Lithium Borophosphate (50-x) P_2O_5 :10Li₂O: 15PbO:25 B_2O_3 : x Tb_2O_3 . (where x=1,1.5,2 mol%) have been prepared by melt-quenching technique. The amorphous nature of the prepared glass samples was confirmed by X-ray diffraction. The absorption spectra of three Tb^{3+} doped lead lithium borophosphate glasses have been recorded at room temperature. The various interaction parameters like Slater-Condon parameter F_2 , Lande' parameter (ξ_{4f}), nephelauexetic ratio (β') and bonding parameter ($b^{1/2}$) have been computed. Judd-Ofelt intensity parameters Ω_{λ} ($\lambda = 2, 4, 6$) and laser parameters have also been calculated.

Keywords: Borophosphate glasses, Energy interaction parameters, Optical properties, Judd-Ofelt analysis.

Introduction

Glass materials doped with rare earth ions are widely used mainly for near-infrared solid-state lasers, optical amplifiers, up-conversion systems [1-5]. Glass as a material is comparatively cheap, relatively easy to produce as well as use for synthesis in a wide range of compositions. Glasses with rare earth ions are one of the functional optical materials. Glasses are in particularly suitable for rare earth ions due to higher solubility in host glass matrix [6]. Phosphate glasses have a best thermo-optical performance with considerable chemical durability, high gain as with low energy back transfer and weak up conversion [7-10].

Recently, phosphate glasses have received a great deal of attention due to their potential application in optical data transmission, detection, sensing and laser technology, waveguide [11–14]. When compared with borate and silicate glasses these glasses have distinctive optical properties such as large infrared transmission window, high gain density, low up conversion and wide bandwidth emission spectra [15, 16].

The aim of the present study is to prepare the Tb^{3+} doped lead lithium borophosphate glass with different Tb_2O_3 concentrations. The absorption spectra, fluorescence spectra of Tb^{3+} of the glasses were investigated. The Judd-Ofelt theory has been applied to compute the intensity parameters Ω_{λ} (λ =2, 4, 6). These intensity parameter have been used to evaluate optical properties such as spontaneous emission probability, branching ratio, radiative life time and stimulated emission cross section.

Experimental Techniques

Preparation of glasses

The following Tb^{3+} doped phosphate glass samples (50-x) P_2O_5 :10Li₂O: 15PbO:25 B_2O_3 : x Tb_2O_3 . (where x=1,1.5, 2) have been prepared by melt-quenching method. Analytical reagent grade chemical used in the present study consist of P_2O_5 , B_2O_3 , Li_2O and PbO and Tb_2O_3 . They were thoroughly

mixed by using an agate pestle mortar. then melted at 1080° C by an electrical muffle furnace for 2h., After complete melting, the melts were quickly poured in to a preheated stainless steel mould and annealed at temperature of 360° C for 2h to remove thermal strains and stresses. Every time fine powder of cerium oxide was used for polishing the samples. The glass samples so prepared were of good optical quality and were transparent. The chemical compositions of the glasses with the name of samples are summarized in Table 1.

Table 1

Chemical composition of the glasses

· · · · · · · · ·	8
Sample	Glass composition (mol %)
LLBP (UD)	50P ₂ O ₅ :10Li ₂ O: 15PbO:25 B ₂ O ₃
LLBP (TB1)	49P ₂ O ₅ :10Li ₂ O: 15PbO:25 B ₂ O ₃ :1 Tb ₂ O _{3.3}
LLBP (TB1.5)	48.5P ₂ O ₅ :10Li ₂ O: 15PbO:25 B ₂ O ₃ :1.5 Tb ₂ O ₃ .
LLBP (TB 2)	48P2O5:10Li2O: 15PbO:25 B2O3:2 Tb2O3.

LLBP (UD) -Represents undoped Lead Lithium Borophosphate glass specimen. LLBP (TB) -Represents Tb³⁺ doped Lead Lithium Borophosphate glass specimens.

Oscillator Strength

The spectral intensity is expressed in terms of oscillator strengths using the relation [17].

$$f_{\text{expt.}} = 4.318 \times 10^{-9} \mathrm{f} \epsilon \,(\mathrm{v}) \,\mathrm{d} \,\mathrm{v}$$
 (1)

Where, ε (*v*) is molar absorption coefficient at a given energy *v* (cm⁻¹), to be evaluated from Beer–Lambert law.

Under Gaussian Approximation, using Beer–Lambert law, the observed oscillator strengths of the absorption bands have been experimentally calculated [18], using the modified relation:

$$P_{\rm m} = 4.6 \times 10^{-9} \times \frac{1}{cl} \log \frac{I_0}{I} \times \Delta v_{1/2}$$
(2)

Where c is the molar concentration of the absorbing ion per unit volume, l is the optical path length, $\log I_0/I$ is optical density and $\Delta v_{1/2}$ is half band width.

Judd-Ofelt Intensity Parameters

According to Judd [19] and Ofelt [20] theory, independently derived expression for the oscillator strength of the induced forced electric dipole transitions between an initial J manifold $|4f^N(S, L) J\rangle$ level and the terminal J' manifold $|4f^N(S',L') J\rangle$ is given by:

$$\frac{8\Pi^2 mc\bar{\upsilon}}{3h(2J+1)n} \left[\frac{\left(n^2+2\right)^2}{9} \right] \times S(J,J^{-})$$
(3)

Where, the line strength S (J, J') is given by the equation

S (J, J') = $e^2 \sum \Omega_{\lambda} < 4f^N(S, L) J \| U^{(\lambda)} \| 4f^N(S', L') J' > 2$ $\lambda = 2, 4, 6$ In the above equation m is the mass of an electron, c is the velocity of light, v is the wave number of the transition, h is Planck's constant, n is the refractive index, J and J' are the total angular momentum of the initial and final level respectively, Ω_{λ} ($\lambda = 2, 4, 6$) are known as Judd-Ofelt intensity parameters (Table 4).

Radiative Properties

The Ω_{λ} parameters obtained using the absorption spectral results have been used to predict radiative properties such as spontaneous emission probability (A) and radiative life time (τ_R), and laser parameters like fluorescence branching ratio (β_R) and stimulated emission cross section (σ_p).

The spontaneous emission probability from initial manifold $|4f^{N}(S', L') J'>$ to a final manifold $|4f^{N}(S, L) J>|$ is given by:

A[(S', L') J'; (S, L) J] =
$$\frac{64\pi^2 v^3}{3h(2j+1)} \left[\frac{n(n^2+2)^2}{9} \right] \times S(j', \bar{j})$$
 (4)

Where, S (J', J) = $e^2 \left[\Omega_2 \| U^{(2)} \|^2 + \Omega_4 \| U^{(4)} \|^2 + \Omega_6 \| U^{(6)} \|^2\right]$

The fluorescence branching ratio for the transitions originating from a specific initial manifold $| \mathbf{f}^{N} (S', L') \mathbf{J} >$ to a final many fold $| \mathbf{f}^{N} (S, L) \mathbf{J} >$ is given by

$$\beta \left[(S', L') J'; (S, L) J \right] = \sum \frac{A[(S'L)]}{A[(S'L')J'(\overline{S}L)]}$$
(5)
$$S L J$$

Where, the sum is over all terminal manifolds.

The radiative life time is given by

$$\tau_{rad} = \sum A[(S', L') J'; (S,L)] = A^{-1}_{Total}$$

$$S \perp J$$
(6)

Where, the sum is over all possible terminal manifolds. The stimulated emission cross -section for a transition from an initial manifold $|f^{N}(S', L') J\rangle$ to a final manifold $|f^{N}(S, L) J\rangle$ is expressed as

$$\sigma_{p}(\lambda_{p}) = \left[\frac{\lambda_{p}^{4}}{8\pi c n^{2} \Delta \lambda_{eff}}\right] \times A[(S', L')J'; (\overline{S}, \overline{L})\overline{J}]$$
(7)

Where, λp the peak fluorescence wavelength of the emission band and $\Delta \lambda_{eff}$ is the effective fluorescence line width.

Nephelauxetic Ratio (β) and Bonding Parameter (b^{1/2})

The nature of the R-O bond is known by the Nephelauxetic Ratio (β ') and Bonding Parameter ($b^{1/2}$), which are computed by using following formulae [21, 22]. The Nephelauxetic Ratio is given by

 $\beta' = v_g / v_a \tag{8}$

Where, v_g and v_a refer to the energies of the corresponding transition in the glass and free ion, respectively. The values of bonding parameter ($b^{1/2}$) is given by

$$b^{1/2} = \left[\frac{1-\beta'}{2}\right]^{1/2} \tag{9}$$

Result and Discussion

XRD Measurement - Figure 1 presents the XRD pattern of the sample contain - B_2O_3 which is show no sharp Bragg's peak, but only a broad diffuse hump around low angle region. This is the clear indication of amorphous nature within the resolution limit of XRD instrument.

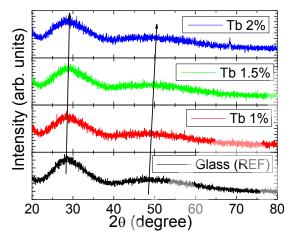


Fig. 1: X-ray diffraction pattern of P₂O₅:PbO: Li₂O: B₂O₃: Tb₂O₃.

Thermal Property

Figure 2 shows the thermal properties of LLBP glass from 300° C to 1000° C. From the DSC curve of present glasses system, we can find out that no crystallization peak is apparent and the glass transition temperature T_g are 351,450 and 583 respectively. The T_g increase with the contents of Tb₂O₃ increase. We could conclude that thermal properties of the LLBP glass are good for fiber drawing from the analysis of DSC curve.

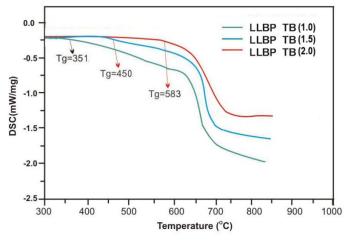


Fig.2: DSC curve of LLBP (TB) glasses.

Absorption Spectrum

The absorption spectra of Tb^{3+} doped LLBP (TB 01) glass specimen has been presented in Figure 3 in terms of optical density versus wavelength (nm). Five absorption bands have been observed from the ground state ${}^{7}F_{6}$ to excited states ${}^{5}D_{4}$, $({}^{5}D_{3}$, ${}^{5}G_{6}$), ${}^{5}L_{10}$,

$({}^{5}D_{2}, {}^{5}G_{4}, {}^{5}G_{5})$ and ${}^{5}L_{9}$ for Tb³⁺doped LLBP glasses.

www.ijcps.org

The experimental and calculated oscillator strengths for Tb³⁺ions in lead lithium borophosphate glasses are given in Table 2.

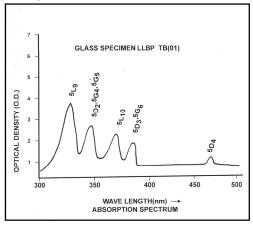
Energy level from ⁷ F ₆	Glass LLBP (TB01)		Glass LLBP (TB1.5)		Glass LLBP (TB02)	
	P _{exp} .	P _{cal} .	P _{exp} .	P _{cal} .	P _{exp} .	P _{cal} .
$^{5}D_{4}$	0.58	0.042	0.56	0.045	0.53	0.50
${}^{5}D_{3}, {}^{5}G_{6}$	0.87	0.33	0.85	0.34	0.82	0.36
${}^{5}L_{10}$	1.64	1.14	1.62	1.15	1.60	1.18
${}^{5}\text{D}_{2}, {}^{5}\text{G}_{4}, {}^{5}\text{G}_{5}$	1.86	0.53	1.84	0.54	1.82	0.56
⁵ L ₉	2.16	0.99	2.14	1.00	2.12	1.03
r.m.s. deviation		0.8906		0.8648		0.8257

Table 2: Measured and calculated oscillator strength ($P_m \times 10^{+6}$) of Tb³⁺ions in LLBP glasses.

Computed values of F_2 , Lande's parameter (ξ_{4f}), Nephlauxetic ratio(β') and bonding parameter($b^{1/2}$) for Tb^{3+} doped LLBP glass specimen are given in Table 3.

rable 5 12, ç4t, p and b parameters for reforming doped glass specimen.								
Glass Specimen	F ₂	ξ_{4f}	β'	b ^{1/2}				
Tb ³⁺	400.26	1820.87	0.9703	0.1219				

Table 3 F_2 \mathcal{E}_{45} β' and $\beta^{1/2}$ parameters for Terbium doned glass specimen


Judd-Ofelt intensity parameters Ω_{λ} (λ =2, 4, 6) were calculated by using the fitting approximation of the experimental oscillator strengths to the calculated oscillator strengths with respect to their electric dipole contributions. In the present case the three Ω_{λ} parameters follow the trend $\Omega_2 > \Omega_6 > \Omega_4$. The spectroscopic quality factor (Ω_4 / Ω_6) related with the rigidity of the glass system has been found to lie between 0.459 and 0.484 in the present glasses. The value of Judd-Ofelt intensity parameters are given in Table 4

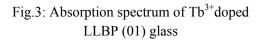

Glass Specimen	$\Omega_2(pm^2)$	$\Omega_4(\text{pm}^2)$	$\Omega_6(\text{pm}^2)$	Ω_4/Ω_6	References
LLBP(TB01)	2.894	1.115	2.430	0.4588	P.W.
LLBP (TB1.5)	3.156	1.208	2.449	0.4933	P.W.
LLBP (TB02)	3.968	1.213	2.508	0.4837	P.W.
WNT (PR)	6.90	3.50	5.20	0.6731	[23]
SZP(DY)	2.15	0.04	0.82	0.0488	[24]

Table 4: Judd-Ofelt intensity parameters for Tb³⁺ doped LLBP glass specimens

Fluorescence Spectrum

The fluorescence spectrum of Tb³⁺doped in Lead lithium borophosphate glass is shown in Figure 4. There are four bands observed in the Fluorescence spectrum of Tb^{3+} doped lead lithium borophosphate glass. The wavelengths of these bands along with their assignments are given in Table 5. Fig. (4). Shows the fluorescence spectrum with four peaks (${}^{5}D_{4} \rightarrow {}^{7}F_{6}$), (${}^{5}D_{4} \rightarrow {}^{7}F_{5}$), (${}^{5}D_{4} \rightarrow {}^{7}F_{4}$) and (${}^{5}D_{4} \rightarrow {}^{7}F_{3}$), respectively for glass specimens.

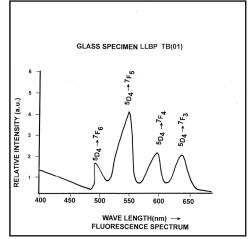
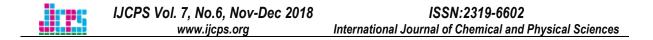


Fig.4: fluorescence spectrum of Tb³⁺doped LLBP (01) glass

Table 5. Emission peak wave lengths (λ_{max}) , radiative transition probability (A_{rad}) , branching ratio (β), stimulated emission cross-section(σ_p) and radiative life time(τ_R) for various transitions in Tb³⁺doped LLBP glasses.

Transition	LLBP TB 01					LLBP TB 1.5			LLBP TB 02				
	λ _{max} (nm)	A _{rad} (s ⁻¹)	β	σ _p (10 ⁻²⁰ cm ²)	τ _R (µs)	A _{rad} (s ⁻¹)	β	σ (10 ⁻²⁰ cm ²)	τ _R (μs)	A _{rad} (s ⁻¹)	β	σ _p (10 ⁻²⁰ cm ²)	τ _R (μs)
${}^{5}\text{D}_{4} \rightarrow {}^{7}\text{F}_{6}$	488	179 4.93	0.1177	0 .2346		1889.40	0.1153	0.2429		2116.07	0.1080	0.2677	
${}^{5}\text{D}_{4} \rightarrow {}^{7}\text{F}_{5}$	550	10079.40	0.6611	1.532	65.59	10908.90	0.6656	1.651	61.02	13377.20	0.6830	2.0163	51.05
${}^{5}\text{D}_{4} \rightarrow {}^{7}\text{F}_{4}$	582	1406.58	0.0922	0.4454		1473.19	0.0899	0.4568	1	1541.58	0.0787	0.4689	
${}^{5}D_{4} \rightarrow {}^{7}F_{3}$	625	1965.07	0.1289	0.4336]	2117.62	0.1292	0.4562]	2552.09	0.1303	0.5459	

Conclusion


In the present study, the glass samples of composition (50-x) P_2O_5 :10Li₂O: 15PbO:25 B_2O_3 : x Tb_2O_3 (where x=1, 1.5, 2mol %) have been prepared by melt-quenching method. Judd-Ofelt intensity parameters Ω_{λ} (λ =2, 4, 6) are evaluated from the intensities of various absorption bands of optical absorption spectra. The radiative transition probability, branching ratio are highest for (${}^{5}D_{4} \rightarrow {}^{7}F_{5}$) transition and hence it is useful for laser action. The stimulated emission cross section (σ_{p}) has highest value for the transition (${}^{5}D_{4} \rightarrow {}^{7}F_{5}$) in all the glass specimens doped with Tb^{3+} ion. This shows that (${}^{5}D_{4} \rightarrow {}^{7}F_{5}$) transition is most probable transition.

References

[1] K. Seneschal, F. Smektala, B. Bureau, M. Floch, S. Jiang, T. Luo, J. Lucas, and N. Peyghambarian(2005). "Properties and structure of high erbium doped phosphate glass for short optical fibers amplifiers", Materials Research Bulletin 40, 1433–1442.

- [2] Lee, E.T.Y. and Taylor, E.R.M. (2006). "Optical and thermal properties of binary calcium phosphate and barium phosphate glasses", Optical Materials 28, 200–206.
- [3] Bingham,P.A., Hand,R.J. and Forder ,S.D. (2006). "Doping of iron phosphate glasses with Al₂O₃, SiO₂ or B₂O₃ for improved thermal stability", Materials Research Bulletin 41, 1622–1630.
- [4] Koudelka,L., Mosner, P. Zeyer, M. and Jager, C. (2005). "Structure and properties of mixed sodium-lead borophosphate glasses", J. Non-Crystalline Solids 351, 1039–1045
- [5] Sene,F.F(2002). Synthesis and Characterization of Niobium Phosphate Glasses Containing Barium and Potassium for Application in Hosting Matrix of Rare-Earth Ions, PhD thesis, USP.
- [6] Li L, Wei X, Chen Y, Guo C, Yin M. (2012). Energy transfer in Tb³⁺, Yb³⁺ codoped Lu₂O₃ nearinfrared down conversion nanophosphors. J. Rare Earths, 30(3): 197.
- [7] Mazali, I. O., Barbosa, L. C. and Alves, O. L. (2004). "Preparation and Characterization of New Niobophosphate Glasses in the Li₂O–Nb₂O₅–CaO–P₂O₅ System,"J. Mater. Sci., 39, 1987–95.
- [8] Teixeira,Z., Mazali,I. and Alves,O. L. (2007). "Structure, Thermal Behavior, Chemical Durability and Optical Properties of the Na₂O–Al₂O₃–TiO₂–Nb₂O₅–P₂O₅ Glass System," J. Am. Ceram. Soc., 90, 256–63.
- [9] Shao,G.W., Jin,G. L. and Li,Q. (2008). "Gain andNoise Figure Characteristics of an Er³⁺/Yb³⁺ Doped Phosphate Glass Waveguide Amplifier with a Bidirectional Pump Scheme and Double-Pass Configuration," Opt. Eng., 47.
- [10] Ferrer, A., Jaque, D., Siegel, J., Ruiz de la Cruz, A., Solid, J. (2011). "Study of the refractive index modification mechanisms of femtosecond laser processed waveguides in doped phosphate glass through its micro photoluminescence properties," Lasers and Electro-Optics Europe (CLEO Europe/EQEC), Conference on and 12th European Quantum Electronics Conference, 1, 22-26.
- [11] Chen,Guo-hua, Yao, Le-qi, Zhong, Hai-ji, Cui. San-chuan (2016). Luminescent properties and energy transfer behavior between Tm³⁺ and Dy³⁺ ions in co-doped phosphate glasses for white LEDs. Journal of Luminescence. 178: 6-12.
- [12] Raja J. Amjad, M.R. Sahar, S.K. Ghoshal, M.R. Dousti, R. Arifin. (2013). Synthesis and characterization of Dy³⁺ doped zinc–lead-phosphate glass, Optical Materials. 35: 1103-1108.
- [13] Ouis, M.A., ElBatal, H.A. Abdelghany, A.M. Hammad, Ahmed H. (2016). Structural and optical properties of CuO in zinc phosphate glasses and effects of gamma irradiation. Journal of Molecular Structure. 1103: 224-231.
- [14] Aboulfotoh N et al. (2014). Charaterization of copper doped phosphate glasses for optical applications. Ceramic International. 40: 10395-10399.
- [15] Kesavulu, CR et al. (2010). EPR, Optical Absorption and Photoluminescence Properties of Cr³⁺ ions in Lithium Borophosphate Glasses. Journal of Alloys and Compounds. 496: 75-80
- [16] Margaryan, A. Margaryan, J. H. Choi, F. G. Shi (2004) "Spectroscopic properties of Mn²⁺ in new bismuth and lead contained fluorophosphates glasses" Appl. Phys. B 78, p. 409.
- [17] Gorller-Walrand, C. and Binnemans, K. (1988). Spectral Intensities of ffTransition. In: Gshneidner Jr., K.A. and Eyring, L., Eds., Handbook on the Physics and Chemistry of Rare Earths, Vol. 25, Chap. 167, North-Holland, Amsterdam, 101.
- [18] Sharma, Y.K., Surana, S.S.L. and Singh, R.K. (2009). Spectroscopic Investigations and Luminescence Spectra of Sm³⁺ Doped Soda Lime Silicate Glasses. J.Rare Earths, 27, 773.
- [19] Judd, B.R. (1962). Optical Absorption Intensities of Rare Earth Ions. Physical Review, 127, 750.
- [20] Ofelt, G.S. (1962) Intensities of Crystal Spectra of Rare Earth Ions. J.Chemical Physics, 37, 511.
- [21] Sinha, S.P. (1983).Systematics and properties of lanthanides, Reidel, Dordrecht.

- [22] Krupke, W.F. (1974). IEEE J.Quantum Electron QE, 10,450.
- [23] Nunzi Conti, G., Berneschi, S., Bettinelli. M., Chen, B., Pelli, S., Speghini, A. Righini, G.C.(2004). Rare-earth doped tungsten tellurite glasses and waveguides: fabrication and characterization, Journal of Non-Crystalline Solids 345, 343–348
- [24] Ravikumar, V., Giridhar, G. and Veeraiah, N. (2017). Concentration dependence of luminescence efficiency of Dy³⁺ ions in Strontium Zinc Phosphate Glasses mixed with Pb₃O₄, Luminescence, 32, 7.